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Over the past decade, a surge of evidence has documented various pathological pro
cesses in the retina of patients suffering from mild cognitive impairment, Alzheimer’s
disease (AD), Parkinson’s disease (PD), and other neurodegenerative diseases. Numer
ous studies have shown that the retina, a central nervous system tissue formed as a 
developmental outgrowth of the brain, is profoundly affected by AD. Harboring the ear
liest detectable diseasespecific signs, amyloid βprotein (Aβ) plaques, the retina of AD 
patients undergoes substantial ganglion cell degeneration, thinning of the retinal nerve 
fiber layer, and loss of axonal projections in the optic nerve, among other abnormalities. 
More recent investigations described Aβ plaques in the retina located within sites of neu
ronal degeneration and occurring in clusters in the mid and farperiphery of the superior 
and inferior quadrants, regions that had been previously overlooked. Diverse structural 
and/or diseasespecific changes were also identified in the retina of PD, Huntington’s 
disease, and multiple sclerosis patients. The pathological relationship between the
retina and brain prompted the development of imaging tools designed to noninvasively 
detect and monitor these signs in living patients. One such tool is optical coherence 
tomography (OCT), uniquely providing highresolution twodimensional crosssectional 
imaging and threedimensional volumetric measurements. As such, OCT emerged as 
a prominent approach for assessing retinal abnormalities in vivo, and indeed provided 
multiple parameters that allowed for the distinction between normal aged individuals
and patients with neurodegenerative diseases. Beyond the use of retinal optical fundus 
imaging, which recently allowed for the detection and quantification of amyloid plaques 
in living AD patients via a widefield view of the peripheral retina, a major advantage of 
OCT has been the ability to measure the volumetric changes in specified retinal layers. 
OCT has proven to be particularly useful in analyzing retinal structural abnormalities con
sistent with disease pathogenesis. In this review, we provide a summary of OCT findings 
in the retina of patients with AD and other neurodegenerative diseases. Future studies 
should explore the combination of imaging early hallmark signs together with structural– 
functional biomarkers in the accessible retina as a practical means of assessing risk, 
disease progression, and therapeutic efficacy in these patients.
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iNTRODUCTiON

Shielded against external injuries, the brain is a concealed central 
nervous system (CNS) structure that may be uniquely observed 
through the one exception to its enclosure: the retina. The neuro 
retina, a developmental outgrowth of the embryonic brain, con-
tains multiple molecular and cellular features in common with 
the brain, including neurons, glial cells, connected vasculature, 
and the existence of a blood barrier (1–4). The tight link between 
these two CNS tissues raises the prospect of whether the easily 
accessible retina may faithfully represent the brain in healthy and 
neurodegenerative conditions.

As the most common form of neurodegeneration, Alzheimer’s 
disease (AD) is an invariably fatal senile dementia with no cure 
and limited ability for early unequivocal diagnosis in primary 
care settings (5). AD is clinically represented by severe cognitive 
decline, socio-behavioral manifestations, and various visual 
dysfunctions involving narrowed visual field, reduced contrast 
and color recognition, and circadian sleep-wake disturbances 
(6–10). Its neuropathology is a complex continuum of detrimen-
tal processes, most likely beginning with the accumulation and 
propagation of misfolded amyloid β-protein (Aβ) assemblies 
followed by the hyperphosphorylation of (p)tau proteins forming 
neurofibrillary tangles (NFTs) (11). These processes are thought 
to initiate a cascade of secondary pathologies including destruc-
tive inflammatory responses, vascular-associated abnormalities, 
oxidative stress, mitochondrial dysregulation, and vast synaptic 
and neuronal loss (12–14). While these secondary indicators 
are shared among several neurodegenerative diseases, they may 
indicate disease progression, denoting functional deterioration 
and clinical staging. Importantly, growing evidence indicates 
that AD is not confined to the brain but also massively affects 
the retina, an organ feasible for direct, high-resolution imaging 
[reviewed in Ref. (15)].

Over the past three decades, corresponding pathologies 
associated with tissue degeneration were found in the retina 
of patients with neurodegenerative diseases [reviewed in Ref.  
(2, 15, 16)]. In particular, severe optic nerve and retinal ganglion 
cell (RGC) degeneration, thinning of the retinal nerve fiber 
layer (RNFL), and abnormal electroretinography responses 
were documented in patients with mild cognitive impairment 
(MCI) and AD, perhaps offering an effective measure of neu-
rodegenerative progression. Similar to AD, other neurological 
diseases have been shown to affect the retina in certain geomet-
ric locations and cellular layers. This pathological relationship 
between the retina and brain prompted the development of 

Abbreviations: AMD, age-dependent macular degeneration; AD, Alzheimer’s 
disease; ADAS-cog, Alzheimer’s Disease Assessment Scale-cognition; Aβ, Amyloid 
beta-protein; CNS, central nervous system; CDR, Clinical Dementia Rating; CV, 
color vision; CSV, contrast-sensitive vision; fd-OCT, fourier/frequency domain 
OCT; FAF, fundus autofluorescence; GCL, ganglion cell layer; HD, Huntington’s 
disease; IPL, inner plexiform layer; MCI, mild cognitive impairment; MMSE, 
Mini-Mental State Examination; MS, multiple sclerosis; NFTs, neurofibrillary 
tangles; OCT, optical coherence tomography; PD, Parkinson’s disease; PERG, 
pattern electroretinogram; pRNFL, peripapillary retinal nerve fiber layer; RAI, 
retinal amyloid index; RGC, retinal ganglion cell; RNFL, retinal nerve fiber layer; 
RPE, retinal pigment epithelium; sd-OCT, spectral domain OCT; VA, visual acuity.

imaging tools designed to noninvasively detect and monitor 
these signs in living patients.

One such tool, optical coherence tomography (OCT), is a 
unique technology providing high-resolution (1–15  µm) two-
dimensional cross-sectional imaging and three-dimensional volu-
metric measurements. As such, OCT is emerging as a prominent 
technique for assessing retinal abnormalities in  vivo, utilizing  
the reflective and optical properties of tissue against a long wave-
length light beam for analysis and distinction of layers (17–22). 
Several generations of enhancements have produced different 
modalities such as Fourier/frequency domain OCT (fd-OCT), 
stratus-OCT, and spectral domain OCT (sd-OCT), which has 
distinct advantages in resolution and signal-to-noise ratios above 
time domain OCT (19, 23–25). In recent years, multiple studies 
have acknowledged the benefits of these advancements, particu-
larly in AD, Parkinson’s disease (PD) and Huntington’s disease 
(HD). Along with future technological improvements, the ability 
of OCT to provide detailed data on retinal atrophy may prove to 
be a useful technique for assessing neurodegenerative attributes in 
patients, both post- and presymptomatic.

While the pathological hallmarks of AD—Aβ plaques and 
NFTs—have been well established in the brain for over a century, 
their existence in the retina has only recently been identified 
(26–28). Likewise, accumulation of the PD pathological hallmark 
α-synuclein was newly shown in retinal tissues of patients (29). 
Disease-specific protein aggregates are definitive signs that 
could facilitate differential diagnosis between various neurode-
generative diseases affecting the CNS. In particular, cerebral Aβ 
deposits are asserted as the earliest pathognomonic risk factor 
for AD, evidenced by studies detecting accumulation as early as 
20 years prior to the onset of clinical dementia, an insidious phase 
denoted as prodromal AD (12, 30, 31). Recent identification of 
retinal Aβ deposits in concurrence with RGC degeneration in AD 
patients (26, 28) combined with the accessibility of the retina for 
noninvasive high-resolution imaging offers hope for prodromal 
phase intervention and effective treatment. This review covers 
key pathological findings in the retina of AD and other neuro-
degenerative diseases, as well as current investigational retinal 
imaging approaches to detect disease in living patients, with a 
focus on the utility of OCT.

ReTiNAL PATHOLOGY iN AD

evidence of Retinal Degeneration in AD
Growing evidence suggests that various cerebral pathologies 
associated with AD also exist in the retina of MCI and AD 
patients (15, 21, 32–51). In 1986, Hinton et al. reported findings 
of optic nerve degeneration in 8/10 AD patients, of which 3/4 
patient retinas also displayed ganglion cell layer (GCL) loss and 
thinning of the RNFL (52). In a follow-up study, Blanks et al. (53) 
confirmed the original report in 14/16 AD patients, with a signifi-
cant loss of RGCs and their axons as well as vacuolar degeneration 
occurring within these cells (53). An investigation by Sadun 
and Bassi (54) suggested similar findings, while highlighting a 
predominant loss of M-cell class RGCs (54). A later study showed 
an extensive decrease in ganglion cell number in the foveal 
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TAbLe 1 | OCT findings in the retina of AD, MCI, and PD patients.

Clinical diagnosis Region OCT type % reduction range (min − max 
Δ values)a

Reference

Findings

Alzheimer’s disease
RNFL thinning All quadrants sdOCT, fdOCT, 

stratusOCT
6.8–40.4% (6.61–40.40 µm) (28, 37, 38, 41–43, 67, 70–73),* (44, 74–77),** 

(78–80)nd

Superior 7.7–51.9% (6.04–118.20 µm) (28, 33, 38, 41, 42, 65, 67, 70, 72–74, 81),* 
(77),** (82),*** (75, 79)nd

Inferior 9.9–33.0% (5.40–38.30 µm) (38, 41, 42, 67, 72, 73, 81),* (74),** (82),*** 
(75, 79)nd

Temporal sdOCT 10.0–55.7% (5.10–47.70 µm) (38, 67, 81),* (78),** (75, 79)nd

Nasal 8.0–46.0% (5.75–43.00 µm) (67, 72, 81),* (75, 79)nd

Retinal thinning (inner and outer 
sectors)

Macula/fovea sdOCT, fdOCT 5.7–13.4% (9.23–25.24 µm) (38, 70, 71, 78, 79, 83),* (74, 82)**

Reduced volume 2.7–3.4% (0.20–0.34 mm3) (38, 83)*
GCLIPL thinning All quadrants sdOCT, fdOCT 8.3–8.7% (4.21–8.60 µm) (33, 71),* (37, 74)**
Amyloid deposits; inclusion 
bodies; autofluorescent spots

Superior/inferior 
Periphery

sdOCT Deposit/lesion detection (26, 48, 84)

Mild cognitive impairment
RNFL thinning All quadrants sdOCT, stratusOCT 4.7–12.6% (4.75–12.90 µm) (37, 41–43),* (44)**

Superior stratusOCT 3.3–8.3% (3.96–10.13 µm) (38, 42)*
Inferior 11.9% (15.10 µm) (41)**
Temporal sdOCT 10.8% (8.04 µm) (38)*

Reduced volume Macula/fovea sdOCT 3.3% (0.33 mm3) (38)*
GCLIPL thinning All quadrants sdOCT nd (3.62–5.83 µm) (33, 37)*

Parkinson’s disease
RNFL thinning All quadrants sdOCT, stratusOCT 13.8% (15.78 µm) (85),* (76),** (45)ns

Superior sdOCT, fdOCT, 
stratusOCT

2.3–9.6% (3.05–13.30 µm) (19),* (86)**

Inferior fdOCT 6.2–15.0% (8.40–26.00 µm) (19, 87),* (88)**
Temporal sdOCT 7.1–19.8% (4.98–25.00 µm) (88),* (86)**
Inferotemporal 5.1–5.5% (7.02–7.88 µm) (86)**
Nasal stratusOCT 23.6% (23.51 µm) (19)*

Retinal thinning Macula/fovea sdOCT, fdOCT 2.8–4.0% (7.50–10.80 µm) (19, 85, 89),* (86)**
Reduced volume stratusOCT 3.7% (0.27 mm3) (85)*
Inner retinal layer All quadrants sdOCT, fdOCT 13.9% (14.44 µm) (90, 91)*

aReduction in percent and tissue volume/thickness of mean values between patients and healthy controls (range values).
*p < 0.05.
**p < 0.001.
***p < 0.0001.
nd, statistical data not shown; ns, a trend, not statistically significant; NA, not applicable; sd-OCT, spectral domain-OCT; fd-OCT, frequency domain-OCT.
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changes in living patients. This was initially attempted using 
blue-light high-resolution photography by Tsai et al. (63), and 
later advanced to utilizing cross-sectional imaging by OCT  
(34, 37, 67–70). OCT findings in MCI, AD, and PD patients along 
with their correlations with cognition and vision are described 
subsequently and summarized in Tables 1 and 2.

AD Hallmark Pathology in the Retina
While structural and vascular alterations observed in the retina 
of AD patients may prove essential for predicting functional 
decline or conversion to symptomatic AD, they could be shared 
among several neurodegenerative diseases. It was not until 
recently that the existence of AD-specific hallmarks, Aβ plaques, 
was revealed by Koronyo-Hamaoui et al. (27) in 13/13 postmor-
tem retinas of definite AD patients and early-stage cases, in a 
stark contrast to 5 healthy controls (27). Corroborating these 
findings, several other groups later demonstrated elevated Aβ 
peptides, forms of Aβ deposits, and the presence of hyperphos-
phorylated (p)tau in retinas of AD patients but not in controls 

and parafoveal retina (55). Examination of flatmount retinas 
including peripheral regions from 11 AD patients and 9 controls 
revealed a substantial >36% overall neuronal loss throughout the 
retina, which was more pronounced in the superior and inferior 
quadrants, specifically in the mid-peripheral regions (40–49%) 
and far-peripheral inferior retina (50–59%) (56).

With regard to inflammation and vascular changes, retinal 
astrogliosis was described alongside neuronal loss in the retina 
of AD patients (56). Subsequent examination of AD retina added 
support for structural changes in inner retinal layers (41, 57), 
and further uncovered a host of alterations in cup-to-disk ratio, 
macular volume, blood flow, and vasculature (15, 58–64). Of 
great interest were numerous findings of retinal angiopathy and 
vascular-related changes similar to cerebral AD pathologies, 
including narrowed veins, reduction of blood flow, elevated 
blood oxygen saturation, and increased tortuosity (36, 59, 60, 
64–66). Converging data on AD-related retinal abnormalities 
encouraged investigators to develop noninvasive retinal imag-
ing modalities in order to detect and measure these anatomical 
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TAbLe 2 | Correlations between OCT findings and clinical dysfunction/progression in AD and PD patients.

Clinical diagnosis Region OCT type Degree of correlationa Reference

Correlations

Alzheimer’s disease/mild cognitive impairment
RNFL thickness vs. cognitive functionb All quadrants sdOCT, fdOCT r = 0.33 (43)*, (74, 76)**

Superior fdOCT r = 0.24 (74)*
Inferior sdOCT, fdOCT r = 0.35–0.65 (50)*, (74)**
Temporal NA NA NA
Nasal

GCLIPL thickness vs. cognitive functionb All quadrants fdOCT r = 0.33–0.49 (37, 74)*
Macular thickness vs. cognitive functionb All quadrants sdOCT, fdOCT r = 0.34 (74)*, (79)**, (38, 41, 75, 92)ns

Superior fdOCT r = 0.47 (74)**
Inferior r = 0.46
Temporal r = 0.49
Nasal r = 0.48

RNFL thickness vs. visual function All quadrants sdOCT r = 0.46–0.76 (67, 70, 93, 94)*, (79)ns

Parkinson’s disease
RNFL thickness vs. disease progression All quadrants sdOCT, stratusOCT r = 0.39–0.66 (85, 86)*
RNFL thickness vs. visual function sdOCT r = 0.40 (86)**, (87)***

aPearson (r) correlations are represented as absolute values.
bCognitive function examinations: ADAS-cog, CDR, and MMSE.
*p < 0.05.
**p < 0.001.
***p < 0.0001.
nd, statistical data not shown; ns, a trend, not statistically significant; NA, not applicable; sd-OCT, spectral domain-OCT; fd-OCT, frequency domain-OCT; ADAS-cog, AD 
Assessment Scale-cognition; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination.
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(26, 28, 95–98). Scanning of large flatmount retinal sections, 
especially of mid- and far-peripheral regions, allowed for the 
identification of diverse retinal Aβ plaque morphologies that 
were often associated with blood vessels or colocalized with sites 
of cell degeneration (26–28). Retinal plaque pathology mirrored 
amyloid pathology in the brain, including the vascular amyloid 
component and the existence of classical and neuritic plaques 
as well as proto-fibrils and fibrils comprised of Aβ42 alloforms 
(26, 27).

Cross sections isolated from regions rich in Aβ pathology 
showed that these plaques occur in patients more abundantly 
in inner retinal layers, especially in the GCL, while colocalizing 
around and within degenerating RGCs (see Figures 1A–D) (26). 
Curcumin-based fundus imaging in 10 living AD patients versus 
6 healthy controls showed that, in agreement with histologic 
examination of additional retinas from 23 definite AD patients 
versus 14 healthy controls, retinal Aβ deposits appear in clusters 
and are frequently mapped to peripheral regions of the superior 
and inferior quadrants (see Figures 1E–G) (26). These regions 
were often overlooked due to their perceived irrelevance in com-
mon retinopathies [i.e., age-dependent macular degeneration 
(AMD), glaucoma] and visual acuity (VA).

A quantitative histological analysis of Aβ42-containing retinal 
plaques in 8 confirmed AD patients and 7 age- and gender-
matched controls indicated a substantial 4.7-fold increase of 
plaque burden in the retina of patients (Figure 1D), correlating 
with Aβ burden in the respective brains (26). Similarly, non-
invasive curcumin fundus imaging in living patients showed a 
2.1-fold increase in retinal amyloid index (RAI) scores in a subset 
of AD patients versus matched controls (Figure  1F) (26). The 
discovery of classical and neuritic-like plaques, albeit smaller 
in size compared to plaques in the brain, along with NFTs, Aβ42 

fibrils, protofibrils, and structures resembling oligomers, suggests 
that the specific signs of AD are shared between the retina and the 
brain (26). Importantly, in a clinical study, circadian dysfunctions 
were found in AD patients along with structural OCT changes, 
especially in the superior quadrant (28). Degeneration of (mel-
anopsin-containing) mRGCs, photoreceptors known to drive 
circadian photoentrainment, was further shown to be associated 
with retinal Aβ deposits in AD patients [reviewed in Ref. (99)].

In agreement with findings in patients, retinal Aβ deposits 
were identified in various transgenic and sporadic rodent mod-
els of AD at different disease stages [reviewed in Ref. (15, 100)]  
(27, 98, 101–107). Retinal Aβ was associated with RGC degen-
eration, local inflammation, and functional impairments. 
Transgenic mouse models of AD subjected to immunotherapy 
(108–111) exhibited reduction of Aβ plaque burden in the retina 
to the same extent as in the brain (27, 104, 105, 112). To visualize 
in vivo retinal Aβ pathology in animal models and AD patients, 
our group developed a noninvasive retinal amyloid imaging 
method, using curcumin as a fluorescent probe binding to Aβ 
deposits (26, 27, 104). This approach enabled noninvasive, longi-
tudinal monitoring of individual Aβ deposits, their appearance 
during disease progression, and their clearance following immu-
nomodulation therapy in mice (104). The evidence of atrophic 
and proteinaceous pathology in animal models and AD patient 
retinae, described above, provides the rationale for the applica-
tion of OCT retinal imaging in neurodegeneration detection.

OCT FiNDiNGS iN AD

RNFL Thinning
Current OCT research investigating visual system degeneration 
in various neurological diseases produces compelling evidence 
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FiGURe 1 | Noninvasive retinal imaging in Alzheimer’s patients: detecting Aβ deposits and nerve degeneration via scanning laser ophthalmoscopy and optical 
coherence tomography. (A,b) Retinal cross sections from superior quadrants of Alzheimer’s disease (AD) patients (n = 12) and matched healthy controls (CTRL; 
n = 8) stained with antiAβ42 mAbs (12F4) and peroxidasebased labeling (brown). Hematoxylin counterstain for nuclei (violet). Retinas of AD patients contained a 
multitude of Aβ deposits (arrowheads), especially in the ganglion cell layer (GCL). Marked loss of retinal cells is apparent in the GCL, inner nuclear layer (INL), and 
outer nuclear layer (ONL); areas of nuclei loss are indicated by red asterisks. The inner limiting membrane (ILM) and retinal nerve fiber layer (RNFL) are intact in CTRL 
in contrast to AD. Scale bars = 20 μm. Higher magnification images [(b), right panel] show Aβ deposits near and inside blood vessel walls (bv; arrowheads) and 
inside ganglion cell soma (arrow). Scale bars = 10 μm. (C) Quantitative Nissl neuronal area in AD patients (n = 9) and age and gendermatched CTRL (n = 8) 
revealing a significant reduction in AD patients. (D) Quantitative analysis of 12F4immunoreactive (IR) area of Aβ42containing plaques in the superior quadrant  
of retinal flatmounts in a subset of definite AD patients (n = 8) and matched controls (n = 7) showing a significant increase of Aβ42 plaques in AD patients.  
(e) Schematic of a noninvasive retinal amyloid imaging method using curcumin (Longvida®) to label retinal Aβ in live human patients. Subjects’ retinas were imaged 
with a modified scanninglaser ophthalmoscope prior to and following curcumin intake. White spots marked by red circles are curcuminpositive amyloid plaques 
detected in the retina of a living AD patient. (F) Scatter bar plot displays retinal amyloid index (RAI) scores, a fully automated calculation of increased curcumin 
fluorescence representing amyloid deposits in the retina. AD patients (n = 6) showed a significant increase in RAI score in comparison to agematched CTRL (n = 5). 
(G) Qualitative mapping of the “geometric hotspot” regions of Aβ deposits in retinal quadrants of AD patients. Schematic of OCT images from an AD patient vs. 
control are shown [adopted from: Coppola et al. (21)]. (H) OCT image of a selected curcuminpositive plaque (red arrow) in an AD patient with no maculopathy. 
Certain retinal amyloid plaque visualized by curcumin fluorescence fundography in insert. Green lines delineate region of OCT segmentation. (i) Retinal cross section 
by OCT reveals amyloid plaque in outer retinal layers; curcuminpositive deposit located above retinal pigment epithelium (RPE), along with intact RPE and Bruch’s 
membrane. Scale bars = 200 μm. Group means and SEMs are shown. *p < 0.05 and **p < 0.01, unpaired twotailed Student’s ttest. Images and data of (A–i) 
panels, except for part of (e), are modified reprinted from Koronyo et al. (26).
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for retinal thinning, particularly in MCI and AD (see summary 
in Table 1). While a subset of these studies have shown specific 
deterioration of the GCL along with the inner plexiform layer 
(IPL) (33, 37, 71, 74), the majority have demonstrated thinning of 
the RNFL, especially in the superior and inferior quadrants, with 
a focus on the peripapillary region [peripapillary retinal nerve 
fiber layer (pRNFL)] surrounding the optic disk (21, 34, 35, 37, 
50, 65, 68, 71, 74, 78, 83, 92, 113, 114). As the inner-most layer of 
the ocular fundus, this area is composed of RGC axonal projec-
tions leading to the optic nerve. Parisi et al. (67) were the first to 

describe retinal abnormalities in AD patients by utilizing cross-
sectional imaging by OCT (67). With modern advancements 
in noninvasive imaging technologies including next-generation 
OCT methods along with the identification of pathological 
hallmarks in the retina, there has been an exponential growth of 
investigations into retinal pathology in AD patients, especially 
using OCT. A recent report extensively assessed quadrant-specific 
circumpapillary RNFL and macular thickness as well as macular 
volume in AD patients compared to healthy controls (AD, n = 18; 
HC, n = 41) (32). Significant thinning in all quadrants—superior, 
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inferior, nasal, and temporal—of the circumpapillary RNFL 
(p < 0.001) of both left and right eyes was detected, in addition to 
inner and outer macular ring thinning.

Although a couple of studies failed to find differences in retinal 
thickness between patients with AD or MCI and matched HC 
(45, 92), many more studies detected significant RNFL structure 
abnormalities in AD and MCI patients compared with matched 
HC (32, 37, 38, 41–44, 46, 50, 67, 71–73, 75, 76, 78, 79, 81, 82, 87, 
114–116). These reports have indicated that RNFL thickness in 
the patients was substantially decreased in all quadrants or that 
there were specific reductions in the supraretina and infra-retina. 
Moreover, meta-analysis studies support the important role of 
OCT for RNFL analysis in monitoring the progression of AD 
by reporting that retinal thickness was significantly decreased in 
AD and MCI patients compared to HC (21, 35). Results of OCT 
studies in MCI and AD patients are summarized in Table 1.

Although measurements of RNFL thinning in AD demon-
strates promise as a means of assessing degeneration, investigation 
of distinct AD effects in certain retinal regions could enhance the 
practicality of OCT in diagnosis, since some overlap was reported 
between OCT findings in AD and other neurodegenerative dis-
eases. One study reported a significant decrease in RNLF thickness 
in AD, dementia with Lewy bodies, and dementia associated with 
PD, compared to HC group; however, there was no significant 
difference between types of dementia (76). In addition, patients 
with frontotemporal dementia exhibited a significant pRNFL 
reduction, similar to AD and MCI patients (37). In a more recent 
multisite study, 21 AD patients were compared against 74 age-
matched controls, revealing a significant (p = 0.038) reduction in 
average RNFL thickness via OCT imaging. A detailed investiga-
tion into region-specific degeneration showed that the superior 
quadrant presented the most significant reduction [p  =  0.006 
(28)]. A continued theme of quadrant-specific RNFL thinning 
in the superior region has been reported in multiple AD retinal 
studies (33, 41, 42, 65, 68, 70, 73, 77). Marked RNFL thinning in 
the superior quadrant in AD patients may significantly correlate 
with disease stage and support the important role of OCT for 
RNFL analysis in monitoring AD progression.

Correlation of RNFL Thickness with 
visual-Related Dysfunction in AD
To explore a possible relationship between OCT-detected retinal 
structural abnormalities and visual dysfunctions in AD patients, 
a correlation between RNFL thinning and retinal electrical 
response via pattern electroretinogram (PERG) was investigated 
in these patients (67). Specifically, each participant was exposed 
to a controlled, standardized stimulus, with amplitudinal volt-
age response as the measured dependent variable. Response 
time of N35, P50, and N95 were significantly delayed with the 
amplitudinal difference from N35-P50 and P50-N95 also equally 
impaired in AD subjects (67). When these data were compared 
against RNFL thickness, significant correlations between overall 
RNFL and PERG P50 and N95 implicit times as well as P50-N95 
amplitude were revealed. A follow-up study from the same 
research group found similar correlations between retinal struc-
ture and function among patients affected by ocular hypertension 

glaucoma, demyelinating optic neuritis (MSON), and AD (93). 
Those patients who exhibited abnormal PERG responses with 
delayed implicit times and reduced amplitudes also had a sig-
nificant reduction in NFL thickness compared to controls (93).

A later study by Iseri et al. (79) did not find a significant dif-
ference in the latency of visual-evoked potential P100 between 
AD patients and control subjects, with no correlation to RNFL 
thinning (79). Of note, Moschos et al. (82) reported a decrease in 
macular and RNFL thickness along with reduced multifocal-ERG 
activity of the macula in patients with AD, even in those without 
visual deficits (82).

Impairments in contrast-sensitive vision (CSV), VA, and color 
vision (CV) in AD patients were demonstrated in a study by Polo 
et al. (70), together with a strong correlation to sd-OCT meas-
urements (70). In addition to superior quadrant thinning of the 
RNFL, both CSV and CV significantly worsened in AD patients 
as compared to controls. CSV was the functional parameter most 
strongly correlated with structural measurements in patients 
with AD; CV was strongly associated with macular volume. 
VA at different levels of contrast was associated with macular 
and RNFL thickness in AD (70). The correlations between OCT 
findings and visual-related changes are summarized in Table 2. 
Future examination of morphological and pathological origins 
of ocular functional decline should be performed to establish 
the association between visual-related dysfunction and RNFL 
thickness in AD.

Correlation of Retinal Thickness and 
Cognitive Function in MCi and AD
An intriguing study by Ascaso et al. (32) described that the retinal 
thinning observed in MCI patients was further exacerbated in 
AD patients. A correlation between RNFL thickness and cogni-
tive assessments such as the Mini-Mental State Examination 
(MMSE), Alzheimer’s Disease Assessment Scale-cognition 
(ADAS-cog), or Clinical Dementia Rating (CDR) could help to 
conclusively determine the coprogression of RNFL thinning and 
cognitive decline (32). Indeed, in a new study by Ferrari et al. (37) 
in which AD and MCI patients exhibited a significant reduction 
in RNFL and GCL-IPL compared to HC, the GCL-IPL thickness 
measurement correlated with MMSE scores without significant 
effects of age, gender, or disease duration. Correlation with dis-
ease severity in AD suggested that retinal and brain neurodegen-
eration may occur in parallel to some extent (37). Furthermore, 
Cunha et al. (74) revealed that there is a significant correlation 
in AD patients between MMSE scores and pRNFL thickness in 
average (p = 0.001), superior quadrant (p = 0.019), and inferior 
quadrant thickness (p < 0.001) (74). Significant correlations were 
also noted in various full-length macular measurements (i.e., 
average thickness, p = 0.001) as well as GCL-IPL layer thickness 
(p = 0.001) (74).

The relationship between the degree of cognitive impairment 
and RNFL thickness was further studied by Oktem et  al. (43). 
RNFL thickness was significantly lower in AD and MCI groups 
compared with the HC group; a significant correlation was 
found between MMSE scores and RNFL thickness values (43).  
To investigate the potential association between RNFL thickness 
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and episodic memory in MCI patients, Shen et al. (46) reported 
that in MCI patients, inferior quadrant RNFL thickness was 
inversely associated with the following episodic memory scores: 
word list learning (r  =  −0.652, p  =  0.001), story memory 
(r = −0.429, p = 0.041), and story recall (r = −0.502, p = 0.015) 
(46). A summary of correlation analyses between OCT measure-
ments and cognitive dysfunctions is displayed in Table 2.

Interestingly, Iseri et al. (79) found that reduction in macu-
lar volume in AD patients was linked to severity of cognitive 
impairment; total macular volume and MMSE scores were 
significantly correlated (79). A longitudinal case study spanning 
12  months investigated whether OCT measurements of AD 
patients would correlate with progressive changes in cognition 
as determined by multiple cognitive exams (50). In particular, 
significant correlations between the change in pRNFL thick-
ness and the shift in ADAS-cog (r = −0.35, p = 0.02) and CDR 
scores (r  =  −0.39, p  =  0.008) were found (50). Since a few 
studies resulted in no significant correlation between cognition 
and OCT-derived degeneration (38, 41, 75, 92), further care-
ful investigation is needed to determine whether OCT can be 
used to determine neurodegeneration as the source of cognitive 
dysfunction in AD.

Noninvasive Retinal Amyloid  
imaging in AD
Optical coherence tomography is a valuable and useful in vivo 
technique for determining retinal structural abnormalities and 
cell neurodegeneration in AD patients, and may help to distin-
guish between HC, AD patients, and other neurodegenerative 
diseases by the measure of RNFL thinning, specifically in the 
superior and inferior quadrants. Yet, definitive diagnosis of AD 
requires the hallmark specific identification of Aβ and NFTs. 
In recent years, a few studies have been able to detect retinal 
amyloid deposits, inclusion bodies, and autofluorescent spots 
in live subjects via a modified scanning laser ophthalmoscope 
(SLO), fundus autofluorescence (FAF) imaging, and/or OCT.  
In a clinical study, Kayabasi et al. (84) examined 30 MCI patients 
with FAF and OCT and claimed to detect abnormal Aβ deposits, 
mostly in the outer plexiform, ganglion, and nerve fiber layers 
of the retina, concentrated in the perimacular and perivascular 
areas (84). In a subset of 20 patients and 20 HC, hyperintense dots 
were detected with FAF following turmeric (Phytosome-Meriva) 
administration. Additional examination with OCT showed 
that the deposits were more prominent in MCI patients (84). 
In 2016, a study by Snyder et al. used OCT to explore whether 
retinal anatomic alterations are visible in pre-clinical stages of 
AD (48). A comparison between neocortical amyloid aggregation 
(florbetapir PET imaging) and various retinal sd-OCT markers of 
possible disease burden revealed that the surface area of retinal 
inclusion bodies significantly increased as a function of cortical 
amyloid burden (48).

Notably, Koronyo et  al. (26) recently employed proprietary 
curcumin administration to fluorescently label amyloid deposits 
in the retina of 10 AD patients as compared to 2 patients with 
AMD and 6 HC (26). Imaging subjects with a modified SLO, prior 
to and after curcumin oral uptake, allowed for the detection of 

curcumin fluorescence signal and amyloid deposits with high 
resolution (Figure 1E). In this proof-of-concept clinical study, the 
feasibility to detect significant augmentation in retinal amyloid 
burden in a subset of AD patients compared to matched HC was 
demonstrated (Figure 1F) (26). Further, the team utilized focal 
scanning by OCT and revealed specified localization of amyloid 
deposits above retinal pigment epithelium and in the outer layers 
of the retina (Figures 1H,I). Importantly, this was in the absence 
of any maculopathy and was different than the picture in AMD 
patients (26). Consistent with histological examinations, retinal 
amyloid deposits measured in vivo were frequently concentrated 
in the mid- and far-periphery of the superior hemisphere 
(Figures 1E,G), an area that shows significant RNFL thinning in 
AD patients by OCT studies. While OCT has been presented as 
a feasible method of detecting neurodegeneration, these recent 
studies may implicate a new enhanced application of OCT to 
provide layer localization of the identified retinal plaques by SLO 
in MCI and AD patients.

OCT iN OTHeR NeURODeGeNeRATive 
DiSORDeRS

Parkinson’s Disease
As the second most common neurodegenerative disease, PD is 
characterized by motor dysfunctions such as tremor, rigidity, 
and bradykinesia in addition to psychological impairments 
including cognitive deficits, mood variability, and dementia 
(117–119). Like AD patients, individuals suffering from PD 
experience visual disturbances, which, in particular, manifest 
as hallucinations and reduced VA (16, 58, 85–87, 120, 121). 
Physiological injury primarily involves the loss of cerebral 
dopamine, a neurotransmitter involved in physical movement 
and reward-seeking behavior. Initial studies examining the 
retina of PD patients by OCT reported a significant reduction in 
RNFL thickness (inferotemporal, superotemporal, inferior, and 
temporal quadrants) (19, 76, 82, 87, 88, 90, 122), macular thick-
ness (85, 89, 91), and foveal thickness (123) when compared to 
healthy subjects. OCT abnormalities in PD patients and their 
correlations with disease progression alongside visual dysfunc-
tion are summarized in Tables 1 and 2.

Notably, a large, longitudinal study evaluated the retina of PD 
patients via OCT and revealed that these patients exhibit a signifi-
cant progressive thinning of the RNFL in the superotemporal and 
inferotemporal regions as well as a reduction in macular thickness 
against healthy controls (86). After a 5-year follow-up, the results 
indicating a significant reduction in the superotemporal and 
temporal regions were confirmed. Importantly, there was a mod-
erate correlation between superotemporal thinning and visual 
dysfunction as well as disease severity (86). Although one study 
was unable to find differences between PD patients and matched 
controls in RNFL and GCL thickness and in macular volume 
(45), other studies supported these findings (19, 76, 82, 85–91,  
122, 123). With the recent studies demonstrating a progres-
sive retinal degeneration and the discovery of disease-specific 
α-synuclein in the retina of PD patients (29, 89–91, 120, 
124–126), the use of retinal imaging in measuring PD-related 
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neurodegeneration is promising, especially OCT. So far, OCT 
has seemingly provided an effective means of assessing structural 
changes in the retina in order to identify suitable detection path-
ways that may allow for earlier diagnosis, treatment, and slowing 
of disease progression.

Huntington’s Disease
Patients with HD, a neurodegenerative disease with a largely 
genetic component, experience a wide array of symptoms includ-
ing involuntary muscular movements known as chorea, dementia, 
and behavioral disturbances (119, 127, 128). In particular, the 
spreading of the disease follows an autosomal dominant inherit-
ance with a genetic HTT mutation elongating the CAG repeat, 
with longer repeats translating to earlier onset [recently reviewed 
in Ref. (129)] (130–132). Kersten et al. (133) examined sd-OCT 
scans of the macula and pRNFL in 26 HD and 29 healthy patients 
(133). Markedly, though the research team found no difference 
in average pRNFL between HD and healthy individuals, they 
demonstrated a significant reduction in temporal pRNFL thick-
ness in patients compared to healthy controls (62.3 vs. 69.8 mm; 
p = 0.005). In addition, the research team also noted that disease 
duration negatively correlates with both pRNFL thickness and 
macular volume, suggesting that increased length of HD affliction 
significantly thins the pRNFL and reduces macular size. In line 
with the latter correlation analysis of macular volume, Andrade 
et al. (134) evaluated macular and pRNFL thickness in patients 
with HD and normal control individuals by use of sd-OCT (134). 
Findings from this study suggested that HD patients express 
significantly decreased average (231.3 vs. 296.2; p  =  0.033), 
central (341.8 vs. 252.0; p = 0.015), and inferior (225.3 vs. 313.8; 
p = 0.007) macular choroidal thickness in comparison to healthy 
controls (134). In summary, these studies suggest that noninvasive 
detection of HD signs in ocular tissues may provide a useful 
modality for diagnosis and following disease progression.

Multiple Sclerosis (MS)
Multiple sclerosis, an autoimmune disease represented by demy-
elination of axons and disruptions to inflammatory homeostasis, 
has also been identified by neuronal death (135–137). Given that 
patients with MS exhibit inflamed eyes, past reports have sug-
gested that cerebral pathology may mirror ocular manifestations, 
further enriching the value of using optical imaging mechanisms 
in diagnosing the disease. Notably, the ocular inflammation 
present in MS patients has recently been associated with RNFL 
thinning and neuronal degeneration (138). Similar to the results 
shown for AD, OCT imaging of MS patients has demonstrated a 
thinning of the RNFL compared to controls. Significant thinning 
of average and temporal RNFL thickness was found in MS-related 
optic neuritis patients (80, 93, 139) and in MS patients without 
optic neuritis (140, 141). A study by Fisher et  al. (142) dem-
onstrated that RNFL thickness is reduced significantly among 
MS patients (92  µm) vs. controls (105  µm) and is particularly 
reduced in diseased eyes with a history of optic neuritis (85 µm) 
(142). Studying a subgroup of MS patients with the macular thin-
ning predominant phenotype showed conflicting results; while 
Saidha et al. (143, 144) reported that primary retinal pathology 
detectable by OCT defines this subset of patients with MS from 

controls (143, 144), a study by Brandt et al. (145) did not support 
this conclusion (145).

In addition, several earlier OCT studies have not only 
enhanced the understanding of ocular indicators for MS, but 
have also helped to elucidate the disease’s pathologically progres-
sive timeline (141, 146–148). For instance, OCT examination by 
Henderson et  al. (141) in patients with secondary progressive 
MS showed a more advanced disease stage compared to those 
with primary progressive MS. This study further indicated that 
RNFL thickness in the superior and temporal quadrants as well as 
macular volume exhibit considerable diminutions in secondary 
progressive MS patients (p =  0.045, p <  0.001, and p =  0.005, 
respectively) as compared to controls, but only in the temporal 
quadrant (p = 0.008) in patients with primary progressive MS, 
offering a means of distinguishing between the two disease stages 
(141). Accordingly, the use of OCT in MS promises to be highly 
constructive given not only the ability to detect retinal markers 
tied to the disease but also the variability in ocular pathologies 
based on disease advancement.

OCT in Neurodegenerative Retinopathies
Similar to neurodegenerative diseases such as AD, PD, and 
MSON, open-angle glaucoma patients have been shown to expe-
rience significantly reduced RNFL thickness by use of OCT, with 
thinner RFNL corresponding to hindered visual performance 
as measured by PERG, an exam assessing retinal function (93). 
Specifically, Parisi et al. demonstrated that the PERG recordings 
from glaucoma, ocular hypertension, AD, and MSON patients 
exhibited smaller amplitudes and prolonged implicit times as 
compared to healthy individuals, suggesting that such diseases 
similarly impair visual function (93). Like AD patients, normal-
tension glaucoma patients also experience this decrease in pRFNL 
thickness (p = 0.004) in addition to reduced macular ganglion 
cell complex (GCC) thickness (p = 0.006) and augmented global 
loss volume (p < 0.001) (71). Markedly, Eraslan et al. (71) further 
indicated the pertinence of considering retinopathy in AD by 
showing no significant difference between the pRNFL and GCC 
thickness of AD patients and normal-tension glaucoma patients 
via OCT imaging (p > 0.05).

Other ocular diseases that involve a neuronal degenerative 
component are AMD and diabetes retinopathy; a common 
feature of AMD is degeneration of retinal neurons (149, 150), 
and within diabetes are a variety of pathologies, which include 
targeted neuronal death (151). Regardless of the non-significant 
difference found in RFNL and GCL thickness between heal-
thy individuals and type 1 diabetics, Carnevali et  al. (152) 
sparked interest in examining diabetic retinopathy with OCT 
by divulging the ability to detect microvascular alterations that 
may appear before the manifestation of more prominent neuro-
retinopathologies associated with diabetes. Specifically, diabetic 
patients exhibited reduced ocular vessel density in comparison 
to healthy controls (0.464 vs. 0.477, p = 0.005), further enhanc-
ing the relevance of OCT as an efficient imaging tool for early 
disease detection and preventative care (152). Additionally, in 
comparison to other imaging modalities such as blue-light and 
near-infrared FAF, OCT has been noted as the most correct and 
reproducible tool in examining impairments to the geographic 
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atrophy of the fovea for AMD diagnosis (153). Furthermore, sd-
OCT allows not only for investigation of structural changes in 
the retina, but also for variations occurring at the cellular level in 
order to accurately diagnose AMD (154). Overall, OCT analysis 
allowing for detection of diverse pathologies may, in conjunction 
with disease-specific biomarker imaging, facilitate differential 
diagnosis of various retino- and neurodegenerative diseases.

CONCLUDiNG ReMARKS

A revolutionary idea has arisen in recent years suggesting repre-
sentation of brain pathology in retinal tissue, evidenced by similar 
manifestations such as hallmark depositions and neuronal cell 
death. The AD-specific misfolded protein, Aβ plaque, is thought 
to drive tauopathy and inflammation (11, 155), cocontributing 
to the vast synaptic and neuronal loss (14), and making Aβ the 
holy grail of AD diagnostic biomarkers. In the retina, the most 
extensively reported neural degeneration is of RGCs and the 
corresponding axonal thinning of the RNFL, as demonstrated 
mainly by OCT imaging. The apparent correlations between 
OCT-structural findings and visual and cognitive functions in 
AD patients support its utilization in assessing neurodegenerative 
incidence and progression. However, while the geometric distri-
bution of progressive tissue atrophy is profound in the superior 
and inferior quadrants of AD retina, the potential overlap of the 
structural changes between various neurodegenerative diseases, 
such as PD, HD, and MS may instill an inherent limitation in 
differential diagnosis that should be addressed in future studies.

Recent estimates suggest that over 45 million individuals 
suffer from AD and associated dementia worldwide, and this 
number may more than double by 2040 (5, 6). This is a major 
concern for the aging population, as incidence rises sharply 
after 65  years of age, affecting roughly 50% of individuals 
aged 85 and older (5, 6). Despite considerable progress toward 

detection of AD biomarkers, practical diagnostic methods suit-
able for wide clinical deployment are greatly needed. Existing 
brain amyloid imaging technologies are the gold standard for 
AD diagnosis (156), but present challenges such as high costs, 
limited accessibility, and exposure to radioactive isotopes (13, 
157, 158), and thus are currently unfit for large-scale population 
screening or monitoring response to therapies (13, 159–161). 
With the reported colocalization of retinal Aβ and ganglion cell 
degeneration, a combined method to detect hallmark Aβ depos-
its via fundus optical imaging with assessment of structural 
abnormalities by OCT may prove to be a superior approach for 
screening at-risk populations, assessing disease progression, and 
evaluating therapeutic efficacy.
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